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ABSTRACT

Let R be a commutative ring. In this paper, we give several
divisibility and ring-theoretic conditions for R or TðRÞ to be
either zero-dimensional or von Neumann regular. We also
consider divisibility conditions related to R being completely
integrally closed and study several closedness conditions
which hold with respect to units of TðRÞ.

INTRODUCTION

In this paper, we continue our investigation begun in Ref. [173, 4] of
extending ring-theoretic properties in integral domains to the context of
commutative rings with zerodivisors by replacing conditions on elements of
the total quotient ring TðRÞ with internal divisibility conditions on elements
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of the ring R. In the first section, we consider divisibility conditions on R
which are equivalent to R or TðRÞ being either zero-dimensional or von
Neumann regular. In the second section, we give some additional conditions
on R for TðRÞ to be either zero-dimensional or von Neumann regular and
relate this to ideas used in, Refs. [1,2] for subrings of a direct product of
integral domains. The two main results (Theorems 2.2 and 2.3) are that
TðRÞ is zero-dimensional (resp., von Neumann regular) if and only if for
each x 2 R, there is a y 2 R such that xy 2 nilðRÞ (resp., xy ¼ 0) and x þ y is
a regular element of R. In the third section, we investigate divisibility con-
ditions related to R being completely integrally closed. In the fourth section,
we consider several ‘‘closedness’’ properties which hold with respect to units
of TðRÞ and answer some questions raised in Refs. [1,2]. We show in The-
orem 4.2 that if R is a Marot ring, then R satisfies these ‘‘closedness’’
properties with respect to TðRÞ if and only if R satisfies them with respect to
units of TðRÞ. In the final section, we briefly consider some conditions
related to seminormality from Ref. [1].

Throughout, R is a commutative ring with 1 6¼ 0, group of units
UðRÞ; nilðRÞ its set of nilpotent elements, ZðRÞ its set of zerodivisors,
SpecðRÞ its set of prime ideals, and total quotient ring TðRÞ ¼ RS, where
S ¼ R � ZðRÞ. As usual, an x 2 R � ZðRÞ is called a regular element of R.
When we write x=y 2 TðRÞ, we will always mean that x; y 2 R with y a
regular element of R. For any undefined terminology, see Refs. [5,6] or [7].
For an excellent survey of recent work on zero-dimensional commutative
rings, see Ref. [8].

1 DIVISIBILITY CONDITIONS AND VON NEUMANN
REGULAR RINGS

In this section, we give several ‘‘divisibility’’ conditions for a com-
mutative ring R to be either von Neumann regular or a total quotient ring.
Recall that a commutative ring R is von Neumann regular if for each x 2 R,
there is a y 2 R such that x ¼ x2y; equivalently, R is reduced and zero-
dimensional.[6, Theorem 3.1] Of course, the most obvious such divisibility
condition is that R is von Neumann regular if and only if x2 j x for all x 2 R.
Our first result gives several less obvious divisibility conditions on R which
are equivalent to R being von Neumann regular (the equivalence of con-
ditions (4)7(6) is well known).

Proposition 1.1. The following statements are equivalent for a commutative
ring R.

ð1Þ Let m � 2 be a fixed integer. If x j ym for x; y 2 R, then x j y.
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ð2Þ Let x; y 2 R. If x j yn for some integer n � 1, then x j y.
ð3Þ Let x; y 2 R. If yn ¼ xd for some integer n � 1 with d 2 R a non-

unit, then x j y.
ð4Þ All ideals of R are radical ideals.
ð5Þ All principal ideals of R are radical ideals.
ð6Þ R is von Neumann regular.

Proof. ð1Þ ) ð2Þ Suppose that x j yn. If n � m, then also x j ym; so x j y by
hypothesis. If n > m, then also x j ykm with k < n. Thus x j yk by hypothesis,
and hence x j y by induction on n.

ð2Þ ) ð3Þ Clear.
ð3Þ ) ð4Þ Let I be a proper ideal of R. Suppose that xn ¼ i 2 I for

some x 2 R and integer n � 1. Thus x2n ¼ i2, and hence i j x by hypothesis.
Thus x 2 I; so I is a radical ideal of R.

ð4Þ ) ð5Þ Clear.
ð5Þ ) ð6Þ Let x 2 R. Then ðx2Þ is a radical ideal of R by hypothesis.

Since x2 2 ðx2Þ, we have x 2 ðx2Þ, and hence x ¼ x2y for some y 2 R. Thus
R is von Neumann regular.

ð6Þ ) ð1Þ Let x; y 2 R with x j ym; say ym ¼ xd with d 2 R. Since R is
von Neumann regular, y ¼ ue with u 2 UðRÞ and e 2 R idempotent.[6, Cor-
ollary 3.3] Thus y ¼ ue ¼ uem ¼ u1�mðueÞm ¼ u1�mym ¼ ðu1�mdÞx; so x j y. u

Proposition 1.1 yields our next result on when TðRÞ is von Neumann
regular (also, see Theorem 2.3). In a similar manner, one may obtain
criteria for TðRÞ to be either strongly root closed or strongly (2,3)-closed
(see Sec. 4 for the definitions), zero-dimensional (see Sec. 2), or semi-
normal (see Sec. 5).

Proposition 1.2. The following statements are equivalent for a commutative
ring R.

ð1Þ TðRÞ is von Neumann regular.
ð2Þ Let x; y 2 R. If x j yn for some integer n � 1, then x j sy for some

regular element s 2 R.

Proof. ð1Þ ) ð2Þ Suppose that TðRÞ is von Neumann regular and x j yn in R.
By Proposition 1.1, x j y in TðRÞ; so y ¼ zx for some z ¼ d=s 2 TðRÞ. Then
x j sy in R with s a regular element of R.

ð2Þ ) ð1Þ By Proposition 1.1, we need only show that if x j yn in TðRÞ
for some integer n � 1 and x; y 2 TðRÞ, then x j y in TðRÞ. Write x ¼ a=c
and y ¼ b=d. Then x j yn yields that dnae ¼ cfbn for some e 2 R and regular
element f 2 R. Thus ajðcfbÞn in R. By hypothesis, ajsðcfbÞ in R for some
regular element s 2 R. Hence x j y in TðRÞ. u
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By restricting the divisibility conditions in Proposition 1.1 to regular
elements, we obtain several equivalent conditions for R to be a total quo-
tient ring (i.e., R ¼ TðRÞ, equivalently, each regular element of R is a unit of
R). However, we lose the fact that R is reduced.

Proposition 1.3. The following statements are equivalent for a commutative
ring R.

ð1Þ Let x; y 2 R with x a regular element of R. If x j yn for some integer
n � 1, then x j y.

ð2Þ Let x; y 2 R with y a regular element of R. If x j yn for some integer
n � 1, then x j y.

ð3Þ Let x; y 2 R with x; y regular elements of R. If x j yn for some
integer n � 1, then x j y.

ð4Þ R = TðRÞ.
Proof. We first show that any of conditions ð1Þ�ð3Þ implies condition ð4Þ.
Let x 2 R be a regular element of R. Then x2 j x2 implies that x2 j x, and
hence x is a unit of R. Thus condition (4) holds.

Conversely, suppose that condition ð4Þ holds and that x j yn. If either x
or y is a regular element of R, then x is a unit of R by hypothesis, and hence
x j y. Thus conditions ð1Þ�ð3Þ all hold. u

Example 1.4. The ring Z=4Z satisfies the equivalent conditions of Propo-
sition 1.3, but not those of Proposition 1.1. Note that Z=4Z is a total
quotient ring, but it is not reduced.

2 ZERO-DIMENSIONAL TOTAL QUOTIENT RINGS

In this section, we give several conditions on R for TðRÞ to be either
zero-dimensional or von Neumann regular. We then show that a condition
introduced in Ref. [1], and further used in Ref. [2], on a subring R of a direct
product of integral domains is equivalent to TðRÞ being von Neumann
regular.

Recall that a commutative ring R is called p-regular if for each x 2 R,
there is a y 2 R and an integer n � 1 such that x2ny ¼ xn, i.e., x2n j xn. Then
R is p-regular if and only if R is zero-dimensional.[6, Theorem 3.1] Thus, in the
spirit of Proposition 1.2, one may easily show that TðRÞ is zero-dimensional
if and only if for each x 2 R, there is an integer n � 1 and a regular element
s 2 R such that x2n j sxn in R. We give a much more interesting internal
characterization of when TðRÞ is zero-dimensional in Theorem 2.2, but first
a lemma.
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Lemma 2.1. Let R be a commutative ring and x; y 2 R.

ð1Þ Suppose that xy 2 nilðRÞ and let n � 1 be an integer. Then x þ y is
a regular element of R if and only if xn þ yn is a regular element of
R.

ð2Þ Suppose that xy ¼ 0. If ax þ by is a regular element of R for some
a; b 2 R, then x þ y is also a regular element of R. (Thus the ideal
ðx; yÞ contains a regular element of R if and only if x þ y is a
regular element of R.)

ð3Þ Suppose that xy ¼ 0. Then x þ y is a regular element of R if and
only if xm þ yn is a regular element of R for some integers m; n � 1.

Proof. (1) Let xy 2 nilðRÞ. By the Binomial Theorem, ðx þ yÞn ¼ xn þ yn þ z
with z 2 nilðRÞ. Thus ðx þ yÞn is a unit in TðRÞ if and only if xn þ yn is a unit
in TðRÞ. Hence x þ y is a regular element of R if and only if xn þ yn is a
regular element of R.

(2) Suppose that xy ¼ 0; ax þ by is a regular element of R, and that
ðx þ yÞd ¼ 0 for some 0 6¼ d 2 R. If yd ¼ 0, then also xd ¼ 0; and hence
ðax þ byÞd ¼ 0, a contradiction. Thus we may assume that yd 6¼ 0. Then
ðx þ yÞyd ¼ 0 yields y2d ¼ 0 since xy ¼ 0. Hence ðax þ byÞyd ¼ 0, a con-
tradiction. Thus x þ y is a regular element of R.

(3) This follows easily from part (2) above. u

Theorem 2.2. The following statements are equivalent for a commutative
ring R.

ð1Þ TðRÞ is zero-dimensional.
ð2Þ For each x 2 R, there is a y 2 R and an integer n � 1 such that

xny ¼ 0 and xn þ y is a regular element of R.
ð3Þ For each x 2 R, there is a y 2 R such that xy 2 nilðRÞ and x þ y is

a regular element of R.

Proof. ð1Þ ) ð2Þ Suppose that TðRÞ is zero-dimensional, and let x 2 R.
Since TðRÞ is p-regular,[6, Theorem 3.1] there is a z=s 2 TðRÞ and an integer n �
1 such that x2nðz=sÞ ¼ xn. Thus xnðs � xnzÞ ¼ 0. Let y ¼ s � xnz. Then
xny ¼ 0 and zxn þ y ¼ s is a regular element of R. Hence xn þ y is a regular
element of R by Lemma 2.1(2).

ð2Þ ) ð3Þ Suppose that R satisfies condition (2), and let x 2 R. Then
there is a y 2 R and an integer n � 1 such that xny ¼ 0 and xn þ y is a
regular element of R. Thus xy 2 nilðRÞ. Since xny ¼ 0 and xn þ y is a regular
element of R, also ðxnÞn þ yn ¼ ðxn2�nÞxn þ yn is a regular element of R by
Lemma 2.1(1). Hence xn þ yn is a regular element of R by Lemma 2.1(2),
and thus x þ y is a regular element of R by Lemma 2.1(1) again.

ð3Þ ) ð1Þ Suppose that R satisfies condition (3). To show that TðRÞ is
zero-dimensional, it is sufficient to show that each non-minimal prime ideal
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Q of R contains a regular element of R. Let P � Q be distinct prime ideals of
R, and choose an x 2 Q � P. By hypothesis, there is a y 2 R such that xy 2
nilðRÞ and x þ y is a regular element of R. Thus y 2 P � Q, and hence
x þ y 2 Q. Thus Q contains a regular element of R. u

In the next result, a slight modification of the conditions in
Theorem 2.2 forces R to be reduced, and hence von Neumann regular.

Theorem 2.3. The following statements are equivalent for a commutative
ring R.

ð1Þ TðRÞ is von Neumann regular.
ð2Þ For each x 2 R, there is a y 2 R such that xy ¼ 0 and x þ y is a

regular element of R.

Proof. ð1Þ ) ð2Þ Suppose that TðRÞ is von Neumann regular. Then TðRÞ,
and hence R, is reduced. Thus ð2Þ follows from Theorem 2.2 since
nilðRÞ ¼ f0g.

ð2Þ ) ð1Þ Suppose that R satisfies condition ð2Þ. We first show that R
is reduced. Let x 2 nilðRÞ; say xn ¼ 0 for some integer n � 1. Then by
hypothesis, there is a y 2 R such that xy ¼ 0 and x þ y is a regular element
of R. Thus yn ¼ xn þ yn is a regular element of R by Lemma 2.1(1). Hence y
is also a regular element of R, so x ¼ 0. Thus R, and hence TðRÞ, is reduced.
It follows from Theorem 2.2 that TðRÞ is zero-dimensional, and hence von
Neumann regular.[6, Theorem 3.1] u

Remark 2.4.

ð1Þ Theorems 2.2 and 2.3 also follow from Ref. [6, Theorem 3.2 and
Corollary 3.3] via Lemma 2.1 and ( for Theorem 2.3) the obser-
vation in the proof of ð2Þ ) ð1Þ of Theorem 2.3 that R is reduced.
The above two results in Ref. [6] are from Ref. [9].

ð2Þ There are many other characterizations in terms of R of when
TðRÞ is von Neumann regular. For example, see Ref. [6, Theorem
4.5] for conditions concerning when MinðRÞ, the set of minimal
prime ideals of R, is compact.

We end this section by showing that condition ð2Þ in Theorem 2.3 is
equivalent to a concept introduced in Ref. [1], and further used in Ref. [2],
for studying subrings of a direct product of integral domains.

Let R be a subring of the direct product PRa of a family fRag of
integral domains. As in Ref. [1], for x ¼ ðxaÞ; y ¼ ð yaÞ 2 R � PRa, we say
that y extends x, written yEx, if ya ¼ xa whenever xa 6¼ 0. We say that x
extends to a regular element of R if there is a regular element y 2 R such that
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yEx. Note that for x; y 2 R, we have xy ¼ 0 if and only if x þ y extends x.
Thus y extends x if and only if xð y � xÞ ¼ 0.

For any commutative ring S, define an ordering on S by a � b if either
a ¼ 0 or a ¼ b. For a family fRag of commutative rings, the induced pro-
duct order onPRa is then ðxaÞ � ð yaÞ , either xa ¼ 0 or xa ¼ ya for each a,
i.e., ð yaÞ extends ðxaÞ in PRa. This ordering restricts to the ordering E
defined above on any subring R of PRa.

Recall that a commutative ring R is reduced if and only if R is a
subring of the direct product PRa of some family fRag of integral domains,
and that R is a subring of the product of a finite number of integral domains
if and only if R is reduced with only a finite number of minimal prime ideals.
Thus much of our earlier work in Refs. [ 1,2] for reduced rings was set in the
context of subrings of a direct product of integral domains, and the concept
of ‘‘extending to a regular element’’ played a key role. Our next result shows
that the concept of ‘‘extending to a regular element’’ is independent of the
embedding of the reduced ring R in a direct product of integral domains.
Corollary 2.6 then relates this concept to TðRÞ being von Neumann regular.
Proposition 2.5. Let R be a subring of a direct product of integral domains.
Then x 2 R extends to a regular element of R if and only if there is a y 2 R
such that xy ¼ 0 and x þ y is a regular element of R.

Proof. ð)Þ Let x 2 R and zEx with z 2 R regular. Let y ¼ z � x. Then
xy ¼ 0 and x þ y ¼ z is a regular element of R.

ð(Þ Let x 2 R. By hypothesis, there is a y 2 R such that xy ¼ 0 and
x þ y is a regular element of R. Clearly x þ y extends x since xy ¼ 0. u

Corollary 2.6. Let R be a commutative ring which is a subring of a direct
product of integral domains. Then each x 2 R extends to a regular element of
R if and only if TðRÞ is von Neumann regular.

Proof. This follows immediately from Theorem 2.3 and Proposition 2.5.

Thus, in several results in Refs. [1,2], the hypothesis ‘‘every element of
R can be extended to a regular element of R’’ may be replaced by ‘‘TðRÞ is
von Neumann regular’’ (also, see Sec. 4 and 5).

The next corollary generalizes the well-known fact that a reduced
commutative ring with only a finite number of minimal prime ideals (in
particular, a reduced commutative Noetherian ring) has von Neumann
regular total quotient ring.

Corollary 2.7. Let R be a reduced commutative ring such that each nonzero
zerodivisor of R is contained in only a finite number of minimal prime ideals of
R. Then TðRÞ is von Neumann regular.
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Proof. We may view R as a subring of PðR=PaÞ, where fPag is the set of
minimal prime ideals of R. By hypothesis, each 0 6¼ ðraÞ 2 ZðRÞ has only a
finite number of zero entries, and hence can be extended to a regular element
of R by an argument similar to that in the proof of Ref. [1, Lemma 2.5].
Thus TðRÞ is von Neumann regular by Corollary 2.6. u

3 STRONGLY COMPLETELY INTEGRALLY CLOSED
RINGS

Let R be a commutative ring. Recall that x 2 TðRÞ is almost integral
over R if there is a regular element s 2 R such that sxn 2 R for all integers
n � 1. As usual, R is called completely integrally closed (CIC) if whenever
x 2 TðRÞ is almost integral over R, then x 2 R (equivalently, if bnjsan for all
integers n � 1 with a 2 R and b; s 2 R regular elements of R, then bja). In
the spirit of Ref. [2], we define R to be strongly completely integrally closed
(SCIC) if whenever bnjsan for all integers n � 1 with a; b 2 R and s 2 R a
regular element of R, then bja. (Here we have replaced a=b 2 R, where
a 2 R; b 2 R � ZðRÞ, by bja in R, and we allow b 2 ZðRÞ.) Clearly, if a ring
R is SCIC, then R is also CIC (but not conversely, see Example 3.6).

Our first result gives a trivial case when R is always SCIC.

Proposition 3.1. Let R be a commutative ring. If R ¼ TðRÞ, then R is SCIC.
In particular, a zero-dimensional commutative ring is SCIC.

Proof. The first part is clear. For the second part, just recall that R ¼ TðRÞ
when R is zero-dimensional. u

As in Ref. [10], a commutative ring R is called additively regular if for
each x 2 TðRÞ, there is a y 2 R such that x þ y is a regular element (unit) of
TðRÞ; equivalently, R is additively regular if and only if for all x; y 2 R with
y a regular element of R, there is an a 2 R such that x þ ay is a regular
element of R. If either TðRÞ is zero-dimensional or ZðRÞ is a finite union of
prime ideals, then R is additively regular.[6, Theorems 7.4 and 7.2] In particular,
von Neumann regular rings, Noetherian rings, and reduced rings with only a
finite number of minimal prime ideals are additively regular.

We define R to be strongly additively regular if for each x 2 R, there is
a y 2 R such that xy ¼ 0 and x þ y is a regular element of R. Of course, by
Theorem 2.3, R is strongly additively regular if and only if TðRÞ is von
Neumann regular. Thus a strongly additively regular ring is additively
regular (this was also observed in a different context in Ref. [2, Proposition
2.5]). However, the converse is false since any zero-dimensional ring is
additively regular; for a reduced example, see Example 3.7.
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We next show that a strongly additively regular commutative ring R is
SCIC if and only if it is CIC (i.e., when TðRÞ is von Neumann regular).
Example 3.6 shows that it is not enough to just assume that R is additively
regular.

Proposition 3.2. Let R be a strongly additively regular commutative ring
(equivalently, TðRÞ is von Neumann regular). Then R is SCIC if and only if R
is CIC.

Proof. We need only show that R is SCIC if R is CIC. Suppose that R is
CIC, and let a; b; s 2 R with s a regular element of R such that bnjsan for all
integers n � 1; say dnbn ¼ san with each dn 2 R. Since R is strongly addi-
tively regular, there is a z 2 R such that bz ¼ 0 and b þ z is a regular element
of R. Then also az ¼ 0 since s is regular and R is reduced by the proof of
Theorem 2.3. Thus ðdnbÞðb þ zÞn ¼ dnbnþ1 ¼ bsan ¼ ½ðb þ zÞs�an for all
integers n � 1. Hence ðb þ zÞnj½ðb þ zÞs�an for all integers n � 1 with b þ z;
ðb þ zÞs 2 R regular. Thus a ¼ ðb þ zÞw for some w 2 R since R is CIC.
Note that az ¼ bz ¼ 0 yields wz2 ¼ 0; so wz ¼ 0 since R is reduced. Hence
a ¼ bw, and thus R is SCIC. u

Corollary 3.3. Let R be a reduced commutative ring such that each nonzero
zerodivisor of R is contained in only a finite number of minimal prime ideals of
R. Then R is SCIC if and only if R is CIC. In particular, this holds if R is a
reduced commutative Noetherian ring.

Proof. This follows directly from Proposition 3.2 and Corollary 2.7. u

Let M be an R-module. Then the idealization of R and M is the ring
RðþÞM with underlying set R � M under coordinatewise addition, and
multiplication given by ðr; xÞðs; yÞ ¼ ðrs; ry þ sxÞ. In the next several results,
we will use the facts that UðRðþÞMÞ ¼ UðRÞðþÞM ([6, Theorem 25.1(6)]) and
ZðRðþÞMÞ ¼ AðþÞM, where A ¼ ZðRÞ [ ZðMÞ ([6, Theorem 25.3]). See Ref. [6,
Sec. 25] for more details on idealization. We next determine when certain
idealizations are SCIC.

Proposition 3.4. Let R be a subring of a commutative ring B such that each
regular element of R is also a regular element of B ( for example, if
B � TðRÞ). Then RðþÞB is SCIC if and only if R ¼ TðRÞ.
Proof. Let A ¼ RðþÞB. First suppose that R ¼ TðRÞ. Then each element of
R is either a unit or a zerodivisor, and hence each element of A is either a
unit or a zerodivisor. Thus A ¼ TðAÞ, and hence A is SCIC by
Proposition 3.1. Conversely, suppose that R 6¼ TðRÞ. Let x 2 R be a nonunit
regular element. Define s ¼ ðx; 0Þ; a ¼ ð0; 1Þ, and b ¼ ð0; xÞ in A. Then s is a
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regular element of A and bn j san in A for all integers n � 1. However, b 6 j a in
A since x is not a unit of R. Thus A is not SCIC. u

Proposition 3.5. Let R be a CIC commutative ring with R 6¼ TðRÞ. Then
RðþÞTðRÞ is CIC, but not SCIC.

Proof. By Proposition 3.4, A ¼ RðþÞTðRÞ is not SCIC. We next show that A
is CIC. Suppose that ðb; yÞn j ðs; zÞða; xÞn for all integers n � 1 and
ða; xÞ; ðb; yÞ; ðs; zÞ 2 A with ðb; yÞ; ðs; zÞ regular elements of A. Then bn j san

in R for all integers n � 1 with b; s 2 R regular. Thus a ¼ bc for some c 2 R
since R is CIC. Hence ða; xÞ ¼ ðb; yÞðc;wÞ in A with w ¼ ðx � cyÞ=b 2 TðRÞ.
Thus A is CIC. u

Example 3.6. By Proposition 3.5, R ¼ ZðþÞQ is CIC, but not SCIC. Note
that R is additively regular, but not strongly additively regular since R is not
reduced.

Example 3.7. (A reduced commutative ring R which is additively regular,
but not strongly additively regular.) Let K be a field, and let A ¼
K½X1;X2; . . .� ¼ K½fXng j n 2 Ng�. Then I ¼ ðfXiXj j i; j 2 N; i 6¼ jgÞ is a
radical ideal of A contained in the maximal ideal N ¼ ðfXn j n 2 NgÞ. Thus
R ¼ AN=IN is a quasilocal reduced ring with maximal ideal M ¼ NN=IN.
Clearly ZðRÞ ¼ M, and thus TðRÞ ¼ R. Hence R is additively regular.
However, for any 0 6¼ x 2 M, there is no y 2 R such that xy ¼ 0 and x þ y is
a regular element of R. Thus R is not strongly additively regular.

Question 3.8. Is there a reduced commutative ring R which is CIC, but not
SCIC?

4 CLOSEDNESS WITH RESPECT TO UNITS OF TðRÞ

In this section, we continue our investigation from Refs. [1,2] of when
R satisfies certain ‘‘closedness’’ properties with respect to units of TðRÞ, i.e.,
if x 2 UðTðRÞ) (equivalently, x ¼ a=b with a; b regular elements of R)
satisfies a given closedness property, then x 2 R (equivalently, b j a in R).
The ‘‘closedness’’ properties we consider here are completely integrally
closed, integrally closed, root closed, and (2,3)-closed. It is clear that these
four ‘‘closedness’’ properties with respect to units of TðRÞ are inherited by
direct products, intersections of overrings in TðRÞ, and (except for the CIC
case) localizations in TðRÞ. We also briefly discuss rings such that TðRÞ�
R � UðTðRÞ).

Recall that a commutative ring R is root closed (resp., ð2; 3Þ-closed) if
whenever xn 2 R for some integer n � 1 (resp., x2; x3 2 R) and x 2 TðRÞ,
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then x 2 R. As in Ref. [2], we say that R is strongly root closed (resp.,
strongly (2,3)-closed) if whenever bn j an for some integer n � 1 (resp.,
b2 j a2; b3 j a3Þ and a; b 2 R, then b j a in R. (Here we have replaced a=b 2 R,
where a 2 R and b 2 R � ZðRÞ, by b j a in R, and we allow b 2 ZðRÞ.) Note
that R is strongly ð2; 3Þ-closed (resp., ð2; 3Þ-closed) if and only if whenever
bn j an for all sufficiently large integers n � 1 and a; b 2 R (resp., a 2 R and
b 2 R � ZðRÞ), then b j a in R. Clearly a strongly root closed (resp., strongly
ð2; 3Þ-closed) ring is root closed (resp., ð2; 3Þ-closed). Examples in Ref. [2]
show that the converse is false.

Our first result is the CIC analog of Ref. [2, Propositions 2.2–2.4], i.e.,
if R is root closed (resp., ð2; 3Þ-closed, integrally closed) with respect to units
of TðRÞ and R is additively regular (in particular, if TðRÞ is von Neumann
regular), then R is root closed (resp., ð2; 3Þ-closed, integrally closed). A
stronger result is given in Theorem 4.2.

Proposition 4.1. The following statements are equivalent for an additively
regular commutative ring R.

ð1Þ R is completely integrally closed.
ð2Þ If x 2 UðTðRÞÞ is almost integral over R, then x 2 R.

Proof. Clearly ð1Þ ) ð2Þ. Conversely, suppose that condition ð2Þ holds, and
let x 2 TðRÞ be almost integral over R. Then there is a regular element s 2 R
such that sxn 2 R for all integers n � 1. Since R is additively regular, there is
a y 2 R such that x þ y 2 UðTðRÞÞ. Then sðx þ yÞn 2 R for all integers
n � 1. Thus x þ y 2 R by hypothesis, and hence x 2 R. Thus R is completely
integrally closed. u

In the spirit of Refs. [1,2], and Sec. 3, we consider the following four
conditions related to root closedness on a commutative ring R with a; b 2 R
and n � 1 an integer. (Similar conditions can be given for ð2; 3Þ-closedness,
integral closedness, and complete integral closedness; we leave the specific
details to the interested reader.)

ð1Þ If bn j an, then b j a (i.e., R is strongly root closed).
ð2Þ If bn j an with b regular, then b j a (i.e., R is root closed).
ð3Þ If bn j an with a; b regular, then b j a (i.e., R is root closed with

respect to units of TðRÞ).
ð4Þ If bn j an with a regular, then b j a.
Clearly conditions ð1Þ ) ð2Þ ) ð3Þ, and conditions ð3Þ , ð4Þ. By

Ref. [2, Example 3.1], condition ð2Þ does not imply condition ð1Þ.
We always have: R is CIC wrt units of TðRÞ ) R is integrally closed

wrt units of TðRÞ ) R is root closed wrt units of TðRÞ ) R is ð2; 3Þ-closed
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wrt units of TðRÞ. Although a CIC ring is always root closed, an SCIC ring
need not be strongly root closed (cf. Proposition 3.1).

In Refs. [2, Question 2.7], we asked if R is integrally closed (resp.,
ð2; 3Þ-closed, root closed) with respect to units of TðRÞ implies that R is
integrally closed (resp., ð2; 3Þ-closed, root closed). In Refs. [2, Propositions
2.2–2.4], we showed that this is true if R is additively regular. We next
generalize this to the class of Marot rings. As in Ref. [6], a commutative ring
R is called a Marot ring if every ideal of R which contains a regular element
is generated by regular elements. Examples of Marot rings include integral
domains, Noetherian rings, rings such that ZðRÞ is a finite union of prime
ideals, polynomial rings, and rings with zero-dimensional total quotient
ring.[6, Theorems 7.2, 7.4, and 7.5] An additively regular ring is a Marot ring,[6,
Theorem 7.2] but not conversely (see Refs. [6, Example 12, p. 185] or Ref. [11]).

Theorem 4.2. Let R be a commutative Marot ring. Then R is root closed
(resp., ð2; 3Þ-closed, integrally closed, completely integrally closed) if and only
if R is root closed (resp., ð2; 3Þ-closed, integrally closed, completely integrally
closed) with respect to units of TðRÞ.
Proof. Suppose that R is a Marot ring which is root closed with respect to
units of TðRÞ. Let a; b 2 R with b regular, and suppose that ða=bÞn 2 R, i.e.,
bn j an, for some integer n � 1. Let I ¼ ða; bnÞ, and let x be a regular element
of I. Then x ¼ ca þ dbn for some c; d 2 R. Using the Binomial Theorem, one
can easily show that bn j xn since bn j an, and hence b jx by hypothesis. Since
R is a Marot ring, a is a linear combination of regular elements of I, and
thus b j a. Hence a=b 2 R; so R is root closed. The converse is clear. The
proofs for the other three closedness properties are similar. For the ð2; 3Þ-
closed case, let I ¼ ða; b3Þ; for the integrally closed case, let I ¼ ða; bÞ; and
for the completely integrally closed case, let I ¼ ða; bÞ. Details are left to the
reader. u

We next give an example of a reduced commutative ring R which
satisfies the four closedness conditions with respect to units of TðRÞ, but not
with respect to TðRÞ. This answers questions raised in Ref. [2, Question 2.7]
and Refs. [1, Sec. 3]. We would like to thank Thomas G. Lucas for sug-
gesting this example.

Example 4.3. (A reduced commutative ring R which is root closed (resp.,
ð2; 3Þ-closed, integrally closed, completely integrally closed) with respect to
units of TðRÞ, but R is not root closed (resp., ð2; 3Þ-closed, integrally closed,
completely integrally closed).) We employ the ‘‘A þ B’’ construction,
see Refs. [6, Section 26] and [12] for more details. Let K be a field,
D ¼ K½X2;X3;XY;Y�, and let P ¼ fP 2 SpecðRÞ j htP ¼ 1 and Y 62 Pg. Let
A be an indexing set for P, and let I ¼ A�N. For each i ¼ ða; nÞ 2 I, let
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Ki ¼ qfðD=PaÞ, and let B ¼ �i2IKi. Finally, let R ¼ D þ B. It is easiest to
view R as R ¼ D � B with coordinatewise addition and ðd1; b1Þðd2; b2Þ ¼
ðd1d2; d1b2 þ d2b1 þ b1b2Þ. Then R is reduced and one can easily check that
R � ZðRÞ ¼ faYn j 0 6¼ a 2 K and n � 1g (here we identify f 2 D with ð f; 0Þ).
One can then easily verify that R satisfies each of the four closedness con-
ditions with respect to units of TðRÞ, but not with respect to TðRÞ. For
example, Y2 j ðXYÞ2 in R, but Y 6 jXY in R. u

Clearly a strongly ð2; 3Þ-closed ring is reduced, and nilðTðRÞÞ ¼ nilðRÞ
when R is ð2; 3Þ-closed. We next show that nilðTðRÞÞ ¼ nilðRÞ when R is
ð2; 3Þ-closed with respect to units of TðRÞ (thus also nilðTðRÞÞ ¼ nilðRÞ if R
is root closed, integrally closed, or completely integrally closed with respect
to units of TðRÞ).
Proposition 4.4. If a commutative ring R is ð2; 3Þ-closed with respect to units
of TðRÞ, then nilðTðRÞÞ ¼ nilðRÞ.
Proof. Clearly nilðRÞ � nilðTðRÞÞ. Conversely, suppose that ðx=yÞn ¼ 0 for
some integer n � 1. Then ðx þ ynÞ=y ¼ ðx=yÞ þ yn�1 is a unit in TðRÞ with
½ðx þ ynÞ=y�m 2 R for all integers m � n. Thus ðx þ ynÞ=y 2 R by hypothesis,
and hence x=y 2 R. u

Corollary 4.5. Let R be a commutative ring.

ð1Þ If R is ð2; 3Þ-closed with respect to units of TðRÞ, then nilðRÞ � sR
for each regular element s 2 R.

ð2Þ Suppose that nilðRÞ ¼ ZðRÞ. Then R is ð2; 3Þ-closed (resp., root
closed, integrally closed, completely integrally closed) if and only if
R is ð2; 3Þ-closed (resp., root closed, integrally closed, completely
integrally closed) with respect to units of TðRÞ.

Proof. (1) This follows directly from Proposition 4.4.
(2) We show that if R is ð2; 3Þ-closed with respect to units of TðRÞ and

nilðRÞ ¼ ZðRÞ, then R is ð2; 3Þ-closed; the proofs of the other cases are left
to the reader. Let x ¼ a=b 2 TðRÞ with x2; x3 2 R. If a 2 R � ZðRÞ, then x 2
R by hypothesis. If a 2 ZðRÞ ¼ nilðRÞ, then x 2 nilðTðRÞÞ ¼ nilðRÞ � R.
Thus R is ð2; 3Þ-closed. u

If TðRÞ � R � UðTðRÞÞ, then clearly R is ð2; 3Þ-closed (resp., root
closed, integrally closed, completely integrally closed) if and only if R is
ð2; 3Þ-closed (resp., root closed, integrally closed, completely integrally
closed) with respect to units of TðRÞ. Thus it is of interest to characterize the
commutative rings R such that TðRÞ � R � UðTðRÞÞ. Recall that an ideal of
a commutative ring R is said to be divided if it is comparable to every other
ideal of R (equivalently, to every principal ideal of R). Note that if ZðRÞ is a

COMMUTATIVE RINGS WITH ZERODIVISORS 4043



divided ideal (and hence necessarily prime), then TðRÞ � R � UðTðRÞÞ. We
next show that the converse is also true except in trivial cases (note that if
R ¼ TðRÞ, then ZðRÞ ¼ R � UðRÞ; so, in this case, ZðRÞ is an ideal of R if
and only if R is quasilocal with maximal ideal ZðRÞ).
Proposition 4.6. Let R be a commutative ring which contains a nonunit regular
element (i.e., R 6¼ TðRÞ). Then TðRÞ � R � UðTðRÞÞ if and only if ZðRÞ is a
divided prime ideal of R.

Proof. We have already observed that TðRÞ � R � UðTðRÞÞ if ZðRÞ is a
divided (prime) ideal of R. Conversely, suppose that R contains a nonunit
regular element and TðRÞ � R � UðTðRÞÞ. Thus ZðRÞ � sR for each regular
element s of R. We need only show that ZðRÞ is an ideal of R. Let I ¼
\fxR j x is a regular element of Rg. By hypothesis, I is a proper ideal of R
containing ZðRÞ. We show that I ¼ ZðRÞ. If not, then there is an
x 2 I � ZðRÞ. Thus ZðRÞ � xR � I � xR, and hence I ¼ xR. Similarly,
I ¼ x2R. Thus x 2 UðRÞ, a contradiction. u

We next consider several classes of commutative rings R such that
ZðRÞ is a divided prime ideal of R. Note that such rings are Marot rings. As
in Ref. [4], we say that a commutative ring R is a pseudo-valuation ring
(PVR) if aP and bR are comparable for all a; b 2 R and prime ideals P of R.
A PVR is necessarily quasilocal (for this and other results about PVRs, see
Refs. [3,4]). We say that a commutative ring R is a F-pseudo-valuation ring
(F-PVR) if nilðRÞ is a divided prime ideal of R and for each prime ideal
P 6¼ nilðRÞ of R; aP and bR are comparable for all a; b 2 R � nilðRÞ (cf.[13,
Corollary 7] and [14, Proposition 1.1(6)]); equivalently, nilðRÞ is a divided prime ideal
of R and R=nilðRÞ is a PVR. [15, Proposition 2.9, 16, Theorem 3.1] Also, see[16] for
some other generalizations of PVRs.

Corollary 4.7. Let R be a commutative ring such that ZðRÞ is a divided prime
ideal of R. Then R is ð2; 3Þ-closed (resp., root closed, integrally closed,
completely integrally closed) if and only if R is ð2; 3Þ-closed (resp., root
closed, integrally closed, completely integrally closed) with respect to units of
TðRÞ. In particular, the above statement holds for a PVR or a F-PVR.

Proof. The first statement is clear since in this case TðRÞ � R � UðTðRÞÞ by
Proposition 4.6. For the ‘‘in particular’’ statement, just note that a PVR or a
F-PVR clearly satisfies the given hypothesis. u

5 SEMINORMAL RINGS

Following Swan,[17] we say that a (necessarily reduced) commutative
ring R is seminormal if whenever a2 ¼ b3 for a; b 2 R, then a ¼ c3 and b ¼ c2
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for some c 2 R. The importance of seminormality is that PicðR½X�Þ ¼ PicðRÞ
if and only if R=nilðRÞ is seminormal.[17, Theorem 1] In Ref. [1], we studied
several variants of seminormality. In this section, we briefly continue that
investigation. The following two conditions were conditions (2) and (6) in
Ref. [1], respectively.

ð5Þ If a2 ¼ b3 with a; b 2 R, then b j a in R.
ð6Þ If a2 ¼ b3 with a; b 2 R regular, then b j a in R.

Clearly condition (5) implies condition (6) and any seminormal ring
satisfies conditions (5) and (6). However, condition (6) is not equivalent to R
being seminormal since any total quotient ring satisfies (6). The ring R in
Example 4.3 also satisfies (6), but R is not seminormal. In Ref. [1,
Example 2.7(a)], an example was given of a reduced commutative ring which
satisfies condition (5), but is not seminormal. In fact, R is seminormal if and
only if R is ð2; 3Þ-closed and TðRÞ is seminormal.[1, Theorem 3.1(a)] In the spirit
of Proposition 1.2, one may easily show that TðRÞ is seminormal if and only
if whenever a2 ¼ b3 for a; b 2 R, there are c; s 2 R with s regular such that
s3a ¼ c3 and s2b ¼ c2.

We next give several other conditions equivalent to condition (6).
The ð2Þ , ð3Þ equivalence of Proposition 5.1 is also in

Ref. [1, Theorem 3.1(c)].

Proposition 5.1. The following statements are equivalent for a commutative
ring R.

ð1Þ If a2 ¼ b3 with a; b 2 R regular, then a ¼ c3 and b ¼ c2 for some
(regular) c 2 R (i.e., R is seminormal with respect to regular ele-
ments of R).

ð2Þ If a2 ¼ b3 with a; b 2 R regular, then b j a (i.e., R satisfies condition
(6)).

ð3Þ If b2 j a2 and b3 j a3 with a; b 2 R regular, then b j a (i.e., R is ð2; 3Þ-
closed with respect to units of TðRÞ).

Proof. ð1Þ ) ð2Þ Clear.
ð2Þ ) ð3Þ Suppose that b2 j a2 and b3 j a3 with a; b 2 R regular. Then

b ¼ a2=b2 and a ¼ a3=b3 are regular elements of R which satisfy a2 ¼ b3,
and hence b j a by hypothesis. Thus b j a.

ð3Þ ) ð1Þ Suppose that a2 ¼ b3 with a; b 2 R regular. Then b2 j a2 and
b3 j a3, and hence b j a by hypothesis. Let c ¼ a=b 2 R. Then a ¼ c3 and
b ¼ c2. u

Our next result is a slight generalization of Ref. [1, Theorem 3.3] via
Corollary 2.6. As a special case, if TðRÞ is von Neumann regular, then R is
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seminormal if and only if R satisfies any of the three equivalent conditions in
Proposition 5.1 (recall that a von Neumann regular ring is seminormal).

Proposition 5.2. Let R be a commutative Marot ring such that TðRÞ is
seminormal. Then R is seminormal if and only if R satisfies condition ð6Þ.
Proof. By Theorem 4.2 and Proposition 5.1 R satisfies condition (6) if and
only if R is ð2; 3Þ-closed. As mentioned above, R is seminormal if and only if
TðRÞ is seminormal and R is ð2; 3Þ-closed.[1, Theorem 3.1(a)] The result
follows. u

Corollary 5.3. (cf.[1, Theorem 3.3]) Let R be a strongly regular commutative ring
ði.e., TðRÞ is von Neuman regularÞ. Then R is seminormal if and only if R
satisfies condition ð6Þ. u
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